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ABSTRACT

Change-point detection problems can be solved either by vari-
ational approaches based on total variation or by Bayesian
procedures. The former class leads to small computational
time but requires the choice of a regularization parameter that
significantly impacts the achieved solution and whose auto-
mated selection remains a challenging problem. Bayesian
strategies avoid this regularization parameter selection, at the
price of high computational costs. In this contribution, we
propose a hybrid Bayesian variational procedure that relies on
the use of a hierarchical Bayesian model while preserving the
computational efficiency of total variation optimization pro-
cedures. Behavior and performance of the proposed method
compare favorably against those of a fully Bayesian approach,
both in terms of accuracy and of computational time. Addi-
tionally, estimation performance are compared to the Stein
unbiased risk estimate, for which the knowledge of the noise
variance is needed.

Index Terms— Parameter selection, total variation, con-
vex optimization, hierarchical Bayesian model.

1. INTRODUCTION

Change-point detection problems are of considerable po-
tential interest in many different applications ranging e.g,
from econometrics to signal processing (see [1, 2], for an
overview). Formally, a change-point detection problem con-
sists in estimating a piecewise constant signal x € R" from
noisy observations y = x + €, where € denotes an additive
degradation.

To solve this problem, variational methods based on to-
tal variation have received considerable interest and research
efforts over the past years (see, e.g., [3] for genomic data pro-
cessing). They aim at providing an estimate for x by mini-
mizing the following non-smooth convex criterion by iterative
strategies [4—7] or straightforward computations [8,9]:
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where u = (u;),_,_, and X is a (positive) regularization
parameter that controls the trade-off between the fit to the ob-
servations y and the amount of regularization. The selection
of \ is critical for the performance of (1) because the solution
x3 strongly depends on its value. Indeed, for A — 0, the first
term in (1) dominates and x consists of many constant seg-
ments, resulting in large variance and overestimation of the
number of segments in x. To the contrary, when A\ — +o0,
the regularization term is dominant and (1) yields a solution
with very few constant segments, small variance, and large
bias. Currently existing methods for selecting a value for
A rely on the Stein unbiased risk estimate (SURE) [10, 11],
which minimizes the unbiased estimator of the mean squared
error between x and x}. While this approach is effective, it
requires the knowledge of the variance of €, which is often
unavailable.

As a second important class of methods for the estimation
of x, Bayesian approaches were intensively studied and suc-
cessfully applied (cf., e.g, [12, 13]). They rely on the choice
of appropriate prior distributions for the unknown parame-
ters of x (e.g., the number of change points, the value of the
signal on each segment,...) and of a model for the noise €.
Estimation of the unknown parameters is then performed on
the basis of their posterior distribution. By adopting a hierar-
chical strategy with additional hyperparameters, no tuning of
the parameters of the prior and noise distributions is needed,
see, e.g., [12]. However, Bayesian methods suffer from a high
computational cost which stems from the fact that the poste-
rior distribution cannot, in most cases, be expressed analyti-
cally and needs to be approximated numerically by sampling
methods such as Markov chain Monte Carlo (MCMC) to con-
struct estimators for the unknown parameters.

In the present contribution, we propose a hybrid Bayesian
variational (HBV) method that combines the advantages of
both worlds. It relies on the straightforward computation of
the solution of (1), from which we can extract a parametric
vector depending on the regularization parameter A. The op-
timal parameter vector and its associated estimate of x are
then determined automatically based on the maximization of
the posterior distribution of a Bayesian hierarchical model for
which knowledge of the noise variance is not needed. The
performance of the proposed hybrid procedure compare fa-



vorably against those of a fully Bayesian approach, both in
terms of estimation accuracy and computational cost. It is
also compared against the benchmark SURE that assumes the
a priori knowledge of the noise variance.

The remainder of this contribution is organized as follows.
In Section 2, we describe the proposed HBV denoising algo-
rithm. Numerical experiments validating and illustrating the
proposed method are conducted in Section 3. Conclusions are
drawn in Section 4.

2. HYBRID BAYESIAN VARIATIONAL DENOISING

2.1. Parametric model

To formalize the change point detection problem and the auto-
mated regularization parameter selection, we explicitly model
the piecewise constant signal x € R¥ as a signal consti-
tuted of K segments, with corresponding constant values i,
kE = 1,...,K, referred to as the vector it = (ug)1<k<i-
Use is also made of the change-point indicator vector r =

(Ti)gigzv’

- { 1, if there is a change-point at time instant ¢,
’ 0, otherwise.

@)
Convention ry = 1 ensures that the number K of segments
is equal to the number of change-points, i.e., K = Zf;l ry.
By definition, r; = 1 indicates that x; is the last sample be-
longing to the current segment, and thus that z;4; belongs to
next segment. Equivalently, we can deduced from r the set
of time indices Z;, C {1,..., N} corresponding to the k-th
segment for k = 1,..., K, such that Z,, N Z)y = {0} for
k # k' and UK | T;, = {1,--- , N}. Following [14], we also
introduce the pixel-wise change occurrence probability p. In
addition, the noise € is assumed to be zero-mean and with
constant variance o2. Therefore, observations y depend upon
the vector parameter ® = {r, u, 02, p}.

2.2. Regularization parameter selection

The strategy of the proposed HBV denoising algorithm can
now be summarized in the following steps. First, a TV de-
noising algorithm is used to solve (1) for a large number of
candidate values A € A. T[l\en, from each recovered solution
X}, we derive an estimate ® of the parameter vector ©. Fi-
nally, the optimal value A,y of A is chosen as the value A for

which @, maximizes the posterior, i.e.,

Aopt € Argmax f(©,]y) 3)
AEA

where the notation € Argmax indicates that the solution is
not necessarily unique. To model the posterior distribution
f(®.y), we have recourse to a hierarchical Bayesian model,
detailed in next section.

2.3. Hierarchical Bayesian model

We assume that the €;, for ¢ = {1,..., N}, are i.i.d. zero
mean Gaussian variables with constant (but unknown) vari-
ance 02: (0, 02). The joint likelihood function of the ob-
servations y, depending on the piecewise constant model and
noise parameters {r, ut, %}, then reads:

HH \/7exp< W) @)
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To model the posterior distribution, further assumptions
are needed. Following [12], it is first assumed that r are a pri-
ori independent and distributed according to a Bernoulli dis-
tribution with parameter p, quantifying the prior probability
of having a change-point at a given location:

N

[[ria—pt. )

i=1

f(xlp) =

Furthermore, a Beta(ay, 1) distribution is assigned to p:

I' (v, 1)

a;—1 1— 04071. 6
T (ao) T (an)” (1-p) (6)

f (pleo, a1) =

Segment values p, fork = {1,..., K}, are also assumed
to be i.i.d., distributed according to a common Gaussian dis-
tribution NV (10, 03):

Y (1 — o)
f(plpo,03) = H eXp(—“kfo) (7)
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Finally, a non-informative Jeffreys prior is assigned to the
noise variance o2:

1
f(0?) o ot (8)

With these assumptions, the posterior distribution reads:

ﬂ®ww3i5f@mumﬂf@mf@mmm>
x f (o, 03) f(0?) (9

where f (y|r,p,0%), f(rp). f(plao,ar), f(klpo,af),
and f (02) have been defined in (4), (5), (6), (7), and (8),
respectively.

2.4. Proposed algorithm

The proposed HBV algorithm consists in repeating for a large
number of candidates A € A the following three-step proce-
dure.

Step 1 consists in computing X} € RY, the solution
of (1), using a variational strategy, based on our own imple-
mentation of Condat 1D-TV algorithm [8].



Step 2 relies on the fact that, by nature, the solution X3} is
piecewise constant with K A segments. Therefore, from each
solution x3, an estimate, denoted G))\ = {r)\, oy, U)\,p)\} of
the parameter vector ® involved in the hierarchical Bayesian
model, can be obtained: Estimates T, of the change-point lo-
cations (or, equivalently, of the sets (I,\ k)1 <h<R ) can be
easily computed and empirical estimates of the remaining pa-
rameters can be derived as follows:

1
By = (fix, lc)1<;€<f( where 7iy i = Z yi, (10)
IZ ] =
3 Ak
33 = Z > (i fak), (1
k lzGI,\k
P = K /N. (12)

We denote X = (Z,;)1<i<n. the estimate of x such that:

(Vk € {1,K)\})(VZ GI)\JC), f)\_’i :ﬁ)\,k- (13)
Note that X is different from x} but both estimates share the
same change-point locations. R

Step 3 computes the posterior distribution f(©,|y) based
on the hierarchical Bayesian model (9).

Finally, the optimal regularization parameter A, is se-
lected as the one that maximizes the posterior distribution (9)
according to (3). Consequently we denote X, the estimate
X when A = Agp. The HBV procedure is sketched in Algo-
rithm 1.

Algorithm 1 HBV algorithm

Input: Observed signal y € R,
Predefined set of regularization parameters A.
Prior parameters & = {ag, ai, o, ag}.

Iterations:
1: for A € Ado
2:  Estimate x} with Condat 1D-TV algorithm.
3:  Estimate ©y = {F\, iy, 0%, Dx } from x5.
4:  Compute f ((:) Aly) with (9) and compute X .
5: end for

Output: Aot € Argmax, ., f(Oi]y);

Solution X, -

3. PERFORMANCE ASSESSMENT

3.1. Experimental settings

Non informative prior parameters are used for the Bayesian
hierarchical model (og = a3 = 1, from which it follows
that p has an a priori uniform distribution on [0, 1]; o =
LS v and 02 = LVar(y), where Var stands for the
variance).

First example — To illustrate and quantify the performance
of the proposed HBV denoising procedure, we consider the
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Fig. 1: Illustration of HBV procedure. Top row: true signal
x (solid black), single realization of observations y (gray, SNR
= 1.8 dB), solution Xy, (solid red), non-optimal solutions Xy,
with )‘i = 4 (dashed orange) and A2 = 23 (mixed magenta);
log f(®x]y) evaluated for the set A (second row). Ensemble av-
erage of log f(©.]y) (third row) and empirical distribution of Apt
(bottom row).

piecewise constant signal x € RY with N = 120 samples
plotted in black in Fig.1 (top) together with the resulting data
y (gray) for one realization of an additive Gaussian noise with
signal-to-noise ratio (SNR) of 1.8 dB.

Second example — Complementary results arise from the
study of another example, where x is made of N = 240
samples whose segments are 40 samples long with differ-
ent amplitudes u, and whose interest will be shown in the
following.

3.2. Illustration of regularization parameter selection

In Fig. 1 (top), the selected optimal solution X Aope (s0lid red)
is compared against two non-optimal solutions X, obtained
with \; = 4 (dashed orange) and Ao = 23 (mixed magenta),
respectively, for one single realization. While the non-optimal
solutions clearly fail to reproduce the true signal x, the solu-
tion X, , obtained with the proposed procedure provides a
visually good estimate for x. In Fig.1 (second row), the corre-
sponding log posterior distribution log f (G) Aly) is plotted as
a function of the regularization parameter A. The piecewise
behavior of the posterior stems from the fact that the solutions
x3 have the same discontinuities and are identical for ranges
of A\. We denote by A, the range of values of A for which
the posterior is maximal and define, by convention, Ay as
the smallest value in A,p¢. We note that the log posterior dis-
tribution for a single realization provides a relevant approxi-
mation for the ensemble average of the posterior distribution,
plotted in Fig. 1 (third row) for 100 realizations. The empiri-
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Fig. 2: Estimation for single realizations (Top) and MSE over 100 realizations (Bottom) for different SNR. From left to right SNR =
-1.5dB, 0.4dB and 1.8dB. True signal x (black solid), observations y (gray solid), X, (red solid), Xes (blue dashed) and x3,,, (green

mixed).
SNR (dB) -1.5 0.4 1.8
GSURE | FB | HBV || GSURE | FB | HBV || GSURE | FB | HBV
MAD 1.8 2.5 2.7 1.2 141 20 0.9 09| 0.7
MSE 5.6 135 | 8.7 2.6 38| 5.6 1.5 20| 13
time (s) 95.2 8.1 | 0.045 94.5 7.5 | 0.048 94.0 7.5 | 0.050

Table 1: Estimation performance vs. SNR (first example).

cal distribution of A € Ay is reported in Fig. 1 (bottom). Its
mean (respectively median) equals 13.2 (respectively 13.4),
which is consistent with the position of the maximum of the
ensemble average of the log posterior distribution at A ~ 13.

3.3. Estimation performance

Comparisons with state-of-the-art methods — We proceed
with comparing against a fully Bayesian (FB) procedure in
which one may naturally compute the Bayesian estimators
associated with the posterior distribution f(®]y) in (9). De-
riving the closed-form expression of the maximum a poste-
riori (MAP) or minimum mean squared error (MMSE) esti-
mators associated with f(®|y) is not straightforward. Al-
ternatively, these estimators can be approximated by using
MCMC procedures that essentially rely on a partially col-
lapsed Gibbs sampler [15] similar to the algorithm derived
in [14]. It consists in iteratively drawing samples (denoted
(1)) according to conditional posterior distributions that are
associated with the joint posterior (9). The resulting pro-
cedure, detailed in Algorithm 2, provides a set of samples
9 = {r® p®, 02(t),p(t)}tT:1 that are asymptotically dis-
tributed according to (9). These samples can be used to ap-
proximate the MMSE estimators of the parameters of interest
by empirical averaging. The corresponding optimal solution
is referred to as Xgp.

In addition, X, is also compared against x} for A =
Asure that minimizes the Stein unbiased risk estimate
(SURE). It is used as a benchmark solution since it re-
quires the a priori knowledge of the noise variance o2.
To do so, we have replaced steps 3 and 4 in Algorithm 1
with the computation of the Generalized SURE estimator

Algorithm 2 FB Algorithm

Input: Observed signal y € RY.
Prior parameters ® = {ao, o1, 110, 03 }.-
Iterations:
1: fort=1,...,T do

2. fori=1,...,N —1do

3: Draw rgt) ~P [m\y,r\i,n 027M0,U(2)]
4: end for

5: fork:17...,zili1r§t)do

6: Draw ,u,(f) ~ f (pely,r, 0%, o, 09)

7: end for

8:

Draw ¢2®) ~ f (o|y,r, 1)
9: Drawp“) ~ f(p|r, a0, 1)
10: end for

T
Output: 9 = {r(t)’u(t)7o_2(t)7p(t)}

t=1

proposed in [11], which requires to deal with an expecta-
tion that we approximate by an empirical mean computed
over 10° realizations. Moreover, the output x3, which
minimizes the risk between x3 and x, is obtained with
A = Asurg € Argmin, ., GSURE(y,x}, 0?).

The results for a single realization are plotted in Fig. 2
(top) for different SNR values. Corresponding average per-
formance over 100 realizations are reported in Table 1: Mean
absolute deviations MAD(X) = E[+||X — x|[[1] (where E
stands for the empirical mean estimator), mean squared er-
ror MSE(X) = E[+ ||X — x||3], and average execution times.
Fig. 2 (bottom) provides a performance analysis in terms of
MSE at each location 7 € {1,...,N}.

Overall, the proposed HBV method yields estimates that
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Fig. 3: Estimation performance vs. SNR (second example). MSE
(left) and average computation time (right) associated to X, (red
solid), Xrs (blue dashed) and XKSURE (green mixed).

are comparable with FB results in terms of MSE and MAD,
while its computation time is reduced by a factor of more than
150 with respect to the FB approach. For high SNR values,
HBYV clearly outperforms FB, the latter having wider MSE
peaks at the change point locations, indicating less precision.
Performance are consistent with those obtained with the sec-
ond example and reported in Fig. 3 (left: MSE, right: aver-
age computation time) for different SNR values. In addition,
the computational time associated with HBV is reduced by a
larger factor as the sample size N grows.

The comparisons with GSURE illustrate that, at high
SNR, the estimation performance of the proposed approach
are close to those of the GSURE oracle (which requires the
a priori knowledge of the noise variance) while the computa-
tion cost for the proposed approach is 3 orders of magnitude
smaller. Note that ﬁ,\opt is estimated a posteriori, cf., (13),
while x}_ is a direct solution of (1), resulting in a slightly
lower MSE for high SNR values.

3.4. Behavior comparisons

In addition, Fig. 2 shows that when increasing noise variance
HBYV tends to detect less change points and eventually no
change point, while FB and GSURE yield a larger number
of change point detection, with highly variable locations. Vi-
sually, no clear preference can be given to any of the methods,
yet HBV has a lower MSE than FB at very low SNR. These
pronouncedly different behaviors at low SNR are further il-
lustrated in Fig. 4 where segment size empirical distributions
are plotted as functions of SNR.

4. CONCLUSIONS

We developed a hybrid Bayesian variational method for the
change point detection problem. The originality and advan-
tage of the proposed procedure reside in combining the com-
putational efficiency of variational methods with the statisti-
cal flexibility of a hierarchical Bayesian model, that thus per-
mit to handle efficiently the automated regularization param-
eter selection. The proposed procedure compares favorably
against a fully Bayesian approach in terms of estimation per-
formances, while reducing computational cost by more than 2
orders of magnitude, and achieves, at large SNR, performance

0.3
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Fig. 4: Size empirical distributions of estimated segment vs.
SNR. Second example where x consists of six segments which are
40 samples long (dashed red).

that are similar to those obtained with the GSURE “oracle”
procedure, which requires the a priori knowledge of the noise
variance. Extensions to image denoising and segmentation
are under current investigation.
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